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Abstract 

Background The experience sampling method (ESM), also known as ecological momentary assessment, is gaining 
popularity in physical activity research. This method involves assessing participants’ behaviors and experiences repeat-
edly over time. One key advantage of ESM is its ability to temporally separate the dependent and independent varia-
ble of interest, reducing the risk of reverse causality. However, temporal separation alone is insufficient for establishing 
causality. This methodology paper illustrates the importance of the identification phase in drawing causal conclusions 
from ESM data. In the identification phase the causal effect of interest (or estimand) is specified and the assumptions 
under which a statistical association can be considered as causal are visualized using causal directed acyclic graphs 
(DAGs).

Methods We demonstrate how to define a causal estimand and construct a DAG for a specific ESM research ques-
tion. The example focuses on the causal effect of physical activity performed in real-life on subsequent executive 
functioning among older adults. The DAG development process combines literature review and expert consultations 
to identify time-varying and time-invariant confounders.

Results The developed DAG shows multiple open backdoor paths causing confounding bias, even with temporal 
separation of the exposure (physical activity) and outcome (executive functioning). Two approaches to address this 
confounding bias are illustrated: (1) physical control using the within-person encouragement design, where partici-
pants receive randomized prompts to perform physical activity in their natural environment, and (2) analytic control, 
involving assessing all confounding variables and adjusting for these variables in the analysis phase.

Conclusions Implementing the identification phase enables ESM researchers to make more informed decisions, 
thereby enhancing the validity of causal inferences in studies aimed at answering causal questions.
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Introduction
Studies using the experience sampling method (ESM), 
also termed ecological momentary assessment stud-
ies or diary studies, are increasingly popular to examine 
behaviors and experiences varying within individuals. In 
this type of studies, people’s actions, thoughts, emotions, 
and/or experiences are intensively assessed in real time 
and within people’s natural environments, contributing 
to the study’s ecological validity [1]. ESM studies typically 
provide detailed data at the individual level, which can be 
used to answer various research questions.

Research questions can be categorized into three broad 
groups [2]. First, there are descriptive research questions. 
In the context of ESM data, one could be interested in 
visualizing how physical complaints fluctuate over days 
among older adults [3]. The second type of research 
questions focuses on prediction. For example, Reiter and 
Schoedel predicted compliance to ESM prompts based 
on more than 400 variables [4]. Finally, there are causal 
research questions or questions focusing on whether, and 
if so to what extent, one variable affects another variable. 
For example, one could aim to investigate whether physi-
cal complaints reported in the morning affect levels of 
physical activity (PA) during the day among people with 
type 2 diabetes [5]. In this paper we focus on such causal 
questions.

The ultimate aim of many ESM studies is to investi-
gate the relationship between potential intervention tar-
gets and their associated outcomes. Examples include 
the relationship between PA (as intervention target) and 
cognitive performance (as outcome) [6], the relation-
ship between PA and affect [7], and the links between 
determinants proposed by health behavior theories and 
PA [7, 8]. Establishing the causality of these relation-
ships is crucial to ensure their relevance for intervention 
design. However, in line with the prevailing notion that 
manipulation is needed to imply causation, research-
ers conducting ESM studies tend to refrain from using 
causal language in their study aims and results [9]. Con-
sequently, predictive rather than causal analyses are used 
to answer the research question, but causal conclusions 
inevitably surface when translating the findings into 
policy and practice recommendations [10, 11]. This mis-
match results in ambiguity, bias, and misinterpretation 
of research results [11, 12], also in ESM studies [9]. For 
instance, temporal within-subject relationships identified 
through predictive analyses (e.g., between self-efficacy 
and PA [13], or between PA and cognitive functioning 
[6]) are often mistakenly interpreted as evidence that the 
first variable is a meaningful intervention target for influ-
encing the second.

Advances within the fields of Epidemiology and Com-
puter Sciences have resulted in a formal framework 

providing insight under which assumptions causal con-
clusions can be drawn from observational data [14]. A 
key feature of causal analysis is the identification phase, 
which occurs well before considering any statistical 
analyses (estimation phase) [15]. In this identification 
phase, the causal effect of interest (or causal estimand) 
is specified and the assumptions under which a statisti-
cal association can be considered as causal are identi-
fied. Causal directed acyclic graphs (DAGs), also known 
as causal diagrams, visualize these assumptions by 
displaying the assumed causal structure between the 
exposure (i.e., the independent variable) and outcome 
(i.e., the dependent variable) of interest and related 
variables [16]. As a result, DAGs provide information 
on which confounding pathways should be eliminated 
before a statistical association between the exposure 
and the outcome could be interpreted as a causal effect.

This paper aims to demonstrate the importance of 
incorporating an identification phase when develop-
ing ESM studies with causal research questions. We 
will focus on how the identification phase can help 
researchers make design-related and analytic decisions 
to reduce the impact of confounding bias. In the Meth-
ods section we describe how to define an estimand and 
demonstrate the relevance of creating a DAG. In the 
Results section we discuss two approaches to control 
for the identified confounding pathways. Throughout 
the paper, we deliberately refrain from offering guid-
ance on the estimation phase. Our rationale for doing 
so is two-fold. First, by focusing on the identifica-
tion phase, we hope to convey that it merits equal, if 
not greater, consideration compared to the estima-
tion phase and should not be perceived as a subsidi-
ary component of data analysis. While the estimation 
phase often receives significant attention, the identifi-
cation phase is essential to ensure that the chosen esti-
mation method (e.g., logistic regression with covariate 
adjustment) aligns with the causal question at hand 
[17]. Second, by not describing specific estimation 
techniques, we aim to highlight the generality of the 
identification phase, allowing researchers to select esti-
mation techniques that best suit their specific data and 
assumptions.

To illustrate the identification phase, we use the fol-
lowing research question as use case: “What is the 
causal effect of PA performed in the natural environ-
ment on subsequent executive functioning (EF) among 
community-dwelling older adults?”. Cognitive perfor-
mance is known to fluctuate daily in older adults [18], 
and lab-based studies suggest that PA can have acute 
effects on their EF [19]. However, the impact of PA 
performed in naturalistic settings on subsequent EF 
remains unclear.
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Methods
Defining the estimand
A pivotal, but often neglected step in answering a 
research question is formulating the theoretical esti-
mand or the target of inquiry without direct reference 
to the data at hand and the statistical analysis technique 
one aims to use (e.g., logistic regression) [17]. A theo-
retical causal estimand consist of two components, a 
contrast of potential outcomes and the target popula-
tion [17]. Hence, by outlining this estimand we provide 
information on the outcome of interest, the target popu-
lation and the levels of the exposure to be compared. For 
example, “the difference in the proportion of individuals 
being diagnosed with dementia (outcome of interest) 
among German adults aged 60–80 (target population) 
if they reached the WHO guidelines on PA at the age of 
50 versus if these same adults did not reach the WHO 
guidelines on PA at the age of 50 (levels of the exposure 
to be compared)” is a theoretical causal estimand. Ideally, 
the exposure and outcome are clearly situated in time. 
Within the context of ESM, the exposure and outcome 
of interest are often time-varying within individuals 
[9]. In this case, we contrast the outcome for situations 
for which different levels of the exposure were observed 
within individuals.

Illustrative example for defining the estimand
Our research question at the outset needs to be further 
specified and transformed into a theoretical causal esti-
mand. Our reason to focus on EF is threefold. First, EF 
has shown to fluctuate over time and contexts among 
older adults [18]. Second, acute PA enhances activity in 
the prefrontal cortex, a key structure for EF [20]. Third, 
lab-based studies examining the acute effect of PA on 
cognitive performance have mainly focused on EF [21]. 
EF is, however, a multidimensional construct, encom-
passing several high-level cognitive abilities, amongst 
which planning, decision-making, working memory 
(WM), responding to feedback, inhibition and flexibility 
[22]. Because WM deficits are the most often reported 
cognitive complaint among older adults [23], it was 
decided to focus on the subdomain WM. Hence, the out-
come of interest is WM performance.

Similar to EF, PA is a multidimensional construct 
encompassing intensity, duration, frequency and type 
of activities performed [24]. Lab studies examining the 
effect of PA on cognition have typically focused on the 
effect of different PA intensities and durations on cog-
nitive performance [21]. Among healthy older adults, 
immediate cognitive enhancements can be expected 
when PA is performed at a moderate intensity or higher 
[19]. Lab studies conducted among different age groups 
have found that PA performed for a period of ≥ 11 min is 

more likely to result in changes in cognitive performance 
than PA performed for a period of < 11 min [25]. Further-
more, lab-based studies have shown that stronger cog-
nitive enhancements can be expected when the interval 
between the bout of PA and the cognitive assessment is 
less than 20 min [25]. Hence, the levels of the exposure 
are defined as performing 0 versus ≥ 11  min of PA at a 
moderate to high intensity in the natural environment in 
the 25 min (11 + 14 min) interval before the assessment 
of EF. An interval of 14 rather than 20  min was chosen 
to allow for sufficient time to complete the cognitive 
assessments.

Finally, the population of interest is defined as Flem-
ish community-dwelling adults aged 65 or above who 
(1) show no indications of mild cognitive impairment, 
(2) are able to be physically active at a moderate inten-
sity or higher, and (3) are able to complete cognitive 
assessments using a smartphone. Taken together, the 
theoretical causal estimand is “the difference in WM per-
formance assessed maximum 14 min after performing 0 
or ≥ 11 min of PA at a moderate to high intensity in the 
natural environment among Flemish community-dwell-
ing older adults”.

After defining the estimand, one can decide on the 
assessment of the exposure and outcome. Here, the 
exposure as well as the outcome will be assessed in par-
ticipants’ natural environment. WM performance will 
be measured using cognitive tasks provided on a smart-
phone. Ideally, more than one task is used to assess a 
cognitive construct [26]. Furthermore, in the context of 
ESM, these tasks need to reliably capture within-person 
changes [27]. Memory updating tasks asking partici-
pants to memorize and update (by addition or subtrac-
tion) numbers and spatial 3-back tasks are both valid 
tasks for assessing WM performance in older adults [26]. 
Furthermore, both tasks have shown to capture day-to-
day variability in WM performance reliably among older 
adults [26, 28]. Considering participant burden, WM 
performance will be assessed using a memory updating 
task and a spatial 3-back task provided once per day. The 
measure of performance for both tasks is the percentage 
of correct responses [28]. The exposure of interest will 
be measured using accelerometry. Both PA intensity and 
duration will be assessed using a wrist-worn accelerom-
eter as wrist-worn sensors are considered most suitable 
for long-term use among older adults [29]. Wrist accel-
erometers provide good validity and reliability for meas-
uring PA duration at different intensities in older adults 
[30].

The relevance of creating a DAG
By developing a DAG we create a better understanding 
of how the exposure and the outcome are causally linked 
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with other variables. Furthermore, DAGs inform us 
which variables we should (not) adjust for to obtain an 
unbiased estimate of the causal effect of the exposure on 
the outcome. With adjusting for a variable we refer to sta-
tistically controlling for a third variable or a set of third 
variables in order to eliminate non-causal association 
between the exposure and the outcome. This can be done 
using different methods, amongst which outcome regres-
sion, propensity score analyses (e.g., inverse probability 
weighting) and stratification [16].

Figure  1 shows a simple DAG, in which variable X is 
the exposure and Y is the outcome. We will use this 
DAG to provide a brief overview of DAG terminology 
and rules. Variables are indicated using nodes and caus-
ally linked using edges (arrows). A first key feature of a 
DAG is that all edges are directed. Hence, for each rela-
tion between two variables, the direction of the causal 
effect is explicitly indicated. A second key feature is 
that DAGs are acyclic, indicating that variables cannot 
cause themselves at the same timepoint [16]. Directed or 
causal paths are paths in which all arrows point in the 
same direction [14]. Here, the paths “X → Y” and “X → 
A → Y” are both directed paths. They represent a causal 
association between X and Y. Backdoor paths between 
the exposure and the outcome are paths with an arrow 
pointing into the exposure [31]. For example, “X ← B → 
Y” is a backdoor path. Backdoor paths linking X and Y 
represent non-causal association between both variables. 
Paths might contain a collider or a node having two edges 
pointing directly towards it. Here, C is a collider.

Paths can be blocked or unblocked. Paths without col-
liders are unblocked and therefore create statistical asso-
ciation between two variables. Here, the backdoor path 
“X ← B → Y” is open, representing confounding bias. 
B is a common cause of the exposure and the outcome 

and is thus a confounding variable. Adjusting for a non-
collider variable (such as a confounding variable), blocks 
the path, eliminating the statistical association along the 
path. In our example, adjusting for B (e.g., by adding B 
as a covariate in outcome regression) would eliminate the 
confounding bias. Paths including one or more colliders 
are blocked and therefore do not produce statistical asso-
ciation between two variables. In our example, the path 
“X → C ← Y” does not produce statistical association 
between X and Y. However, adjusting for a collider opens 
the path, producing statistical (non-causal) association 
along the path. In our example, adjusting for C would 
produce a statistical (non-causal) association between X 
and Y (i.e., collider bias). In order to understand sources 
of confounding for a specific causal question, it is crucial 
to add relevant common causes of the exposure and the 
outcome to the DAG [33]. The selection of these com-
mon causes should be based on domain knowledge, 
which can be derived from the literature or by consulting 
domain experts [34, 35].

Illustrative example for developing a DAG
We aim to examine the difference in WM perfor-
mance assessed maximally 14  min after participants 
spent ≥ 11  min of PA at a moderate to high intensity 
versus 0  min of PA at a moderate to high intensity. 
Hence, an arrow from PA to WM performance is drawn 
[36]. Furthermore, because PA and WM performance 
are time-varying variables, a DAG depicting repeated 
assessment over time is created. Figure  2 shows the 
DAG depicting our time-varying exposure and out-
come over a period of two days. The assessments of PA 
(k) and WM performance (k + 1) take place on the day 
preceding the day on which PA (k + 2) and WM per-
formance (k + 3) are assessed. In reality, both PA and 

Fig. 1 DAG with X as exposure and Y as outcome. Notes. Green arrows represent causal paths; A red node indicates a common cause 
of the exposure and the outcome; DAG created using Dagitty [32]
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WM performance will be assessed over a longer period. 
However, for simplicity, we draw the DAG depicting 
two days of the study. Because not drawing an arrow is 
a stronger assumption than adding an arrow, arrows are 
also drawn from WM performance (k + 1) to PA (k + 2) 
and from PA (k) to WM performance (k + 3). It should 
be noted that we are not interested in the cumulative 
effect of the exposure over time. Instead, we focus on 
the immediate impact of PA performed in a natural 
environment on WM performance. This is indicated by 
the green arrow connecting PA (k + 2) and WM perfor-
mance (k + 3). As we will repeatedly examine the expo-
sure and outcome within individuals, a green arrow 
could also be drawn between PA(k) and WM perfor-
mance (k + 1). However, for illustrative purposes, we 
will visualize relevant variables to identify the causal 
effect of PA on WM performance on one day. The next 
step is to add common causes of the exposure and the 
outcome based on domain knowledge. In within-sub-
ject designs, two types of confounders can be distin-
guished, namely time-invariant confounders (e.g., sex) 
and time-varying confounders (e.g., fatigue).

Input from the literature as well as from domain 
experts was gathered. The evidence synthesis method of 
Ferguson and colleagues was applied to select common 
causes (i.e., confounding variables) based on empirical 
studies identified by a literature search [34]. Because of 
the limited number of ESM studies examining the effect 
of PA performed in a naturalistic setting on WM per-
formance, it was decided to focus on the more general 
domain of EF. Three studies examining the effect of PA 
performed in (older) adults’ naturalistic environment on 
EF at day-level were identified [6, 37, 38]. Supplementary 
File 1 describes the evidence synthesis in detail. The log-
book documenting the specific steps taken during this 
process is provided in Supplementary File 2. The com-
mon causes obtained via the literature search were all 
time-invariant variables (i.e., age, sex, socio-economic 
status, body mass index, physical functioning, and base-
line PA levels). Consequently, the potential impact of 
time-varying confounders was not taken into account in 
the selected studies.

Six domain experts were consulted to identify relevant 
time-varying confounders. The experts all had specific 
expertise in PA and/or cognitive performance among 
(older) adults and had varying academics backgrounds 
(i.e., Psychology, Movement and Sports Sciences, Medi-
cine, Epidemiology, and Statistics). Each expert was indi-
vidually interviewed via online (5) or face-to-face (1) 
meetings. For experts with no or limited experience with 
DAGs, the meeting started with a short introduction on 
DAG terminology and their use (see Supplementary File 
3). Because we focused on EF in the literature review, 
we also used EF as outcome in the discussions with the 
experts. All experts were shown a basic DAG visualizing 
the exposure and outcome over time via the online soft-
ware ‘Dagitty.net’ [32] and asked which variables could 
influence both the exposure and outcome at day-level. 
Variables identified by the experts were immediately 
added during the meeting. As a result, six DAGs were 
created (i.e., one with each expert). Important to note 
here is that the experts were not instructed to specify 
arrows between the newly-added variables. Figure 3 lists 
the identified time-varying variables and the number of 
experts that mentioned these variables.

Figure  3 shows that a large number of time-varying 
variables were identified by the experts. Considering that 
DAGs are necessarily a simplification of reality, the most 
relevant variables were selected by the first author for 
the final DAG by considering the timing of the variables 
and conceptual similarity. For example, the effect of sleep 
on PA was considered to be mediated by more proximal 
variables such as affect, physical complaints, and stress, 
which were already included in the DAG. Supplementary 
file 4 provides an overview of in- and exclusion decisions 
made for each variable and provides a rationale for the 
decision to exclude or rename specific variables.

Figure  4 shows the developed DAG. Two points are 
important to highlight here. First, to increase readabil-
ity of the DAG, the time-invariant and the time-varying 
confounders were added into supernodes. The arrows 
leaving and entering a supernode are assumed to be rel-
evant for all variables included in the supernode. The 
relations between variables in the same supernode are 

Fig. 2 DAG depicting the time-varying exposure and outcome. Notes. k refers to the timepoint of assessment; DAG created using Dagitty [32]
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Fig. 3 Time-varying variables mentioned by the experts

Fig. 4 Developed DAG. Notes. SES = socio-economic status; BMI = body mass index; Rounded rectangles represent supernodes
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not specified. However, as all variables included in these 
supernodes influence both the exposure and the out-
come, the specific relations between these variables are 
less relevant. Finally, the DAG was created by focusing on 
the cognitive domain EF instead of the subdomain WM. 
However, we do believe that the variables considered rel-
evant for the cognitive domain are also relevant for its 
subdomains. The DAG clearly shows that an association 
between our exposure and our outcome can be gener-
ated by a causal relationship, but also by many unblocked 
backdoor paths (i.e., confounding bias). To distill the 
causal effect, efforts will have to be made to control the 
confounding.

Results
There are two broad strategies for controlling confound-
ing, namely physical control and analytic control [14]. 
The first strategy implies manipulation. As a result, the 
study design becomes (quasi-)experimental. The second 
strategy implies adjusting for confounding variables in 
the analysis phase. For observational studies, this is the 
only strategy for controlling confounding. Below we dis-
cuss both approaches in the context of an ESM study 
design.

Physical control of confounding
In a randomized controlled trial (RCT) the impact of 
unblocked backdoor paths between the exposure and 
the outcome is eliminated by putting the exposure under 

experimental control. Doing so erases the arrows from 
the confounders to the exposure. This approach is, how-
ever, less feasible when we are interested in the imme-
diate and short-lived effect of behaviors taking place in 
naturalistic environments rather than a lab setting.

An alternative is the within-person encouragement 
design, introduced by Schmiedek & Neubauer [39]. In 
this design, participants receive encouragements to dis-
play the exposure of interest (e.g., performing PA at a 
moderate to vigorous intensity for a period of 15  min) 
across occasions on random timepoints (e.g., an encour-
agement is provided on day 1 and 4, but not on day 2 
and 3). These encouragements then act as a time-vary-
ing instrumental variable. An instrumental variable is 
a variable that causes the exposure and is unrelated to 
the outcome other than through the exposure. In other 
words, the effect of the instrumental variable on the out-
come is fully mediated by the exposure. Because poten-
tial confounders have no impact on the time-varying 
instrumental variable (since the encouragements are 
randomly provided), confounding bias is eliminated. Fig-
ure 5 shows the DAG visualizing this approach. We see 
that the encouragements (i.e., the time-varying instru-
mental variable) only influence the exposure. As they 
are provided at random timepoints, no arrow is drawn 
from the confounding variables to the encouragements. 
Arrows are still drawn from confounding variables to the 
exposure. This is because the exposure is not completely 
under experimental control. Participants are encouraged 

Fig. 5 DAG visualizing the instrumental variable approach. Notes. IV = instrumental variable; C. = confounders; DAG created using Dagitty [32]
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to display the behavior, but other aspects (e.g., fatigue or 
pain) might still make the participant decide to ignore 
the encouragement for PA. However, by adopting this 
design, researchers are able to filter out the variation in 
the exposure that is created by the encouragements and 
is thus under experimental control [16].

Illustrative example for physical control of confounding
For our use case, participants receive encouragements to 
perform PA at a moderate-to-high intensity for a period 
of ≥ 11 consecutive minutes before completing the cog-
nitive assessment on randomly selected days during the 
study period. The percentage of days on which an encour-
agement to be physically active is provided and the tim-
ing of these encouragements should be discussed with 
the participants and can be individually adapted [39]. 
After receiving the encouragement, participants have 
a specific time period (e.g., 3  h) to display the behavior 
and to complete the cognitive assessment as soon as they 
have completed the behavior. The lengths of this time 
period can be decided based on a pilot study examining 
the feasibility to comply with the encouragement within 
different time periods. If participants do not respond to 
the prompt, the cognitive assessment is provided after 
the selected time period (e.g., 3  h). On non-encourage-
ment days, participant receive a notification to complete 
the cognitive assessment on a random moment during 
the day (e.g., between 9 AM and 9 PM). Figure 6 visual-
izes the design for the instrumental variable approach.

Analytic control of confounding
Another approach is adjusting for the confounding vari-
ables in the data-analysis phase [14]. Figure  7 displays 
this approach. To examine the causal effect of the expo-
sure (k + 4) on the outcome (k + 5), we need to close 
all backdoor paths. Hence, we need to adjust for the 

time-invariant confounders, the time-varying confound-
ers on timepoints k and k + 3, the exposure on the pre-
vious day (k + 1) and the outcome on the previous day 
(k + 2). This approach requires that, besides the exposure 
and outcome, all the confounding variables are assessed 
in the study. To take into account the correct temporal 
ordering of confounders, exposure and outcome, special 
attention should be paid to the timing of the assessments. 
The time-varying confounders should be assessed before 
the exposure and the exposure should be assessed before 
the outcome.

Illustrative example for analytic control of confounding
At the start of the study participants complete a ques-
tionnaire assessing the time-invariant confounders. Then, 
for the duration of the study, participants complete the 
cognitive assessments each day on a random moment 
between 10 AM and 6 PM. The decision to not assess EF 
in the evening is based on the finding that Flemish older 
adults’ activity levels tend to be very low in the evening 
[40]. The number of consecutive minutes of moderate-
to-high intensity PA performed in the 25 min before the 
start of the cognitive assessment is extracted and cat-
egorized as ≥ 11  min or 0  min. Ideally, the time-varying 
confounders are assessed as close as possible to the start 
of 25-min interval before the cognitive assessment. For 
example, participants are prompted to report their physi-
cal complaints, affect, stress, and fatigue one hour before 
the start of the 25-min interval preceding the cognitive 
assessments. A reminder can be sent after 10 min in case 
participants did not respond to this prompt. However, to 
ensure that the assessment of the time-varying confound-
ers takes place before the exposure, the questionnaire will 
be closed 60 min after the first prompt. Consequently, the 
earliest notification to complete the questionnaire can be 
sent at 8:35 AM. As one might expect reactivity to this 

Fig. 6 Design using a time-varying instrumental variable
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schedule (i.e., people might show less PA because they 
are expecting the cognitive assessment shortly after the 
covariate assessment), one can assess the time-varying 
confounders multiple times before the cognitive assess-
ment. A pilot study is recommended to evaluate whether 
including repeated assessments of the time-varying con-
founders can mitigate these potential reactivity effects. 
Figure 8 visualizes this approach for our use case.

In the analysis phase, we will adjust for the variables 
creating a spurious association between the exposure 
and the outcome. Based on Fig.  4, we can determine 
the minimal set of variables that we should adjust for. 
These are the time-invariant confounders (i.e., age, sex, 

socio-economic status, body mass index, physical func-
tioning, and baseline PA levels), the exposure assessed on 
the previous day, the outcome assessed on the previous 
day, and the time-varying confounders assessed on the 
previous day and the same day (i.e., physical complaints, 
stress, fatigue, and affect).

Summary
The developed DAG shows multiple backdoor paths cre-
ating confounding bias, even with temporal separation 
of exposure and outcome. We discussed two approaches 
for addressing this bias in ESM research, namely physical 

Fig. 7 DAG visualizing analytic control of confounding. Notes. The green rectangles indicate the variables that need to be adjusted for in the 
analysis (i.e., the adjustment set); C. = Confounders

Fig. 8 Design for analytic control of confounding
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control and analytic control. Table  1 summarizes both 
approaches.

Discussion
Due to technological advancements, studies using ESM 
offer exciting opportunities. We are now able to assess 
a broad range of people’s thoughts, emotions, experi-
ences and actions in real time and in naturalistic settings. 
Furthermore, we can augment these data with real-time 
information on people’s environment (e.g., location, 
weather, and noise). These advancements create ave-
nues for further research. However, the innovativeness 
of ESM studies might have, as Rohrer and Murayama 
nicely describe it, “led people to put the technological 
and methodological cart before the conceptual horse” [9] 
(page 7). This paper demonstrates the relevance of the 
identification phase for ESM studies aiming to answer 
causal research questions.

Traditionally, the following steps have been proposed 
for developing an ESM study: (1) define the research 
question, (2) determine the study design, (3) develop 
questionnaires suitable for repeated assessments, (4) 
select a platform for scheduling and delivering remote 
assessments, and (5) perform the analysis [45]. For causal 
research questions, it is essential to adopt an explicit 
causal approach and clearly articulate the causal nature 
of the research question in step 1. This approach requires 
adding an additional step: the identification phase. By 
clearly defining the causal question and the underlying 
assumptions during the identification phase, research-
ers obtain critical information to inform the subsequent 
steps, particularly the study design and the analysis. This 
approach is likely to enhance the study’s internal validity, 
thereby yielding more accurate and actionable insights to 
inform intervention development.

Some have argued that, due to their ability to tempo-
rally separate the exposure from the outcome, observa-
tional ESM studies can provide information on ‘potential 
causal sequences’ [7]. Temporality is necessary for infer-
ring causation, but not sufficient [41, 42]. By develop-
ing a DAG for our estimand we demonstrated that there 
were many open backdoor paths linking our exposure 

and outcome, even when the exposure is assessed imme-
diately before the outcome. To identify these backdoor 
paths, literature as well as experts were consulted. Inter-
estingly, none of the identified papers examining the 
effect of PA in a naturalistic environment on EF at day-
level included time-varying confounders, highlighting 
the relevance of outlining the assumed causal structure 
between the exposure and the outcome using a DAG.

The impact of open backdoor paths (i.e., confounding 
bias) can be reduced using physical as well as analytic 
control [14]. When physical control is possible (i.e., the 
exposure can be manipulated); the decision to perform 
an RCT or a study using a within-person encouragement 
design depends upon the estimand. If we would be solely 
interested in the effect of PA on WM performance, we 
should perform an RCT. However, in our case, we were 
interested in the effect of PA performed in a naturalistic 
environment rather than in a lab setting. Furthermore, 
from a health promotion perspective, an encouragement 
to perform the behavior is also more closely related to an 
intervention promoting PA than a setting in which one is 
forced to perform the behavior. In this way, the within-
person encouragement design also differs from other 
within-person experiments, such as for example ABAB 
designs [43].

In comparison with a purely observational ESM study 
design, the within-person encouragement design offers a 
number of advantages. The most important advantage is 
that this approach does not require researchers to assess 
and adjust for all the confounding variables identified in 
the DAG. A second important advantage of this design 
is that it is likely to create more variation in the levels of 
the exposure than we would obtain in a purely observa-
tional study. A study among our target group of older 
adults showed that the median number of minutes of PA 
at moderate to high intensity per day was 10 (range: 3 – 
24) [40]. Hence, in a purely observational study, the num-
ber of occasions on which older adults would perform 
the cognitive assessments after performing ≥ 11  min of 
PA at a moderate to high intensity might be very limited. 
Rohrer and Murayama also argue that limited within-
person variability in the exposure might be an underlying 

Table 1 Summary of physical control and analytic control approaches

Physical control approach Analytic control approach

Description Exposure is manipulated to reduce or eliminate its asso-
ciation with confounding variables

Confounding variables identified by the DAG are assessed and statistically 
adjusted for during the estimation phase

Design type (Quasi-)Experimental Observational

Advantages • Eliminates need to identify all confounders
• Likely to create more variation in levels of the exposure

• Does not require a manipulable exposure

Limitations • Requires a manipulable exposure
• Participants must be willing to place the behavior 
of interest under experimental control

• Relies on accurate identification and assessment of all confounders
• Requires precise timing of the assessment of exposure, outcome, 
and covariates
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reason for the differences found between within- and 
between-person effects [9]. Hence, for ESM studies 
examining the causal effect of behaviors that are under 
participants’ control and can be repeatedly observed in 
daily life (e.g., PA, breakfast consumption, or performing 
breathing exercises) [39], the within-person encourage-
ment design offers an interesting alternative to address 
confounding bias.

It is important to note that the within-person encour-
agement design provides different information than the 
observational longitudinal design. Using the observa-
tional design, we will obtain the average treatment effect 
or the causal effect of the exposure on the outcome 
across occasions and participants. In contrast, using the 
within-person encouragement design we obtain the local 
average treatment effect (LATE) or the causal effect of the 
treatment for occasions on which the participants acted 
in accordance with the prompt [39]. For our case, this 
would be the causal effect for occasions on which partici-
pants actually performed ≥ 11  min of PA at a moderate 
to high intensity in their natural environment when they 
received the encouragement and did not do so when they 
did not receive the encouragement. However, consider-
ing the rise in just-in-time adaptive interventions aiming 
to provide users with prompts optimized to situations 
during which they are able and willing to show the tar-
geted behavior [44], the LATE might exactly be the effect 
that we are interested in.

In many cases, one is interested in exposures that are 
not controllable due to practical or ethical reasons (e.g., 
stress levels or self-efficacy to be physically active). For 
this type of research questions, analytic control will be 
the only option to reduce confounding. As demonstrated 
above, the timing of the assessment of the covariates is 
key in order to distill the causal effect of the exposure 
on the outcome. In contrast with studies using retro-
spective assessments, a key strength of ESM studies is 
that researchers are indeed able to specify the timing of 
the assessment of specific variables throughout the day. 
However, as questionnaire density negatively impacts 
data quality and compliance [45], the number of covari-
ates that can be assessed per measurement occasion will 
be limited. Again, this highlights the relevance of creating 
a DAG to select the most relevant covariates for assess-
ment in the study.

As this paper demonstrates, the identification phase 
can be time-intensive and demands domain expertise. 
Additionally, developing a DAG capturing complex 
temporal dynamics is challenging. Moreover, it may 
be infeasible to control for all potential sources of con-
founding. Importantly, bypassing this phase does not 
eliminate the need for assumptions. Instead, it leaves the 
causal question and the associated assumptions vague 

and underspecified, possibly leading to biased estimates, 
ambiguous interpretations and unwarranted conclusions 
[17]. At the very least, creating DAGs adds to the trans-
parency of the assumptions made or the potential sources 
of bias that could not be adjusted for.

A first limitation of this paper is that we only focused 
on confounding bias. A spurious association between the 
exposure and the outcome can, however, also be created 
by other types of biases, such as collider and measure-
ment bias [16]. For example, in the context of ESM stud-
ies, collider bias occurs when participants’ likelihood to 
respond to the prompts is influenced by their exposure 
and outcome values (e.g., low levels of PA and feeling 
less cognitively sharp). Measurement bias can have dif-
ferent structures [16]. For example, it could be the case 
that on days on which participants have suboptimal WM 
performance, they are more likely to wear the acceler-
ometer incorrectly. As a result, a spurious path is cre-
ated between the exposure and the outcome. Readers 
interested in collider and measurement bias are referred 
to Chapters 8 and 9 of Hernán and Robins [16]. Second, 
in the current paper, we provide limited guidance for the 
estimation or data-analysis phase. For both illustrated 
approaches, different parametric models can be used. 
For example, estimating causal effects using instrumental 
variables can be done via multiple regression as well as 
structural equation modeling [46]. Similarly, the selection 
of a parametric model for analytic control of confound-
ing (e.g., cross-lagged panel model), will depend on a 
number of parametric assumptions and the presence of 
unmeasured confounding variables [47]. By refraining 
from describing a parametric model for both approaches 
we aim to mitigate creating the incorrect impression 
that each approach is linked with a specific estimation 
technique. Furthermore, as indicated in the Introduc-
tion section, we aimed to highlight the relevance of the 
identification phase as a distinct and independent step in 
causal inference.

Conclusions
This paper demonstrates the usefulness of the identi-
fication phase for ESM studies aiming to answer causal 
research questions. We highlighted the need for more 
clarity and transparency regarding the causal research 
question and showed how researchers can effectively 
communicate their causal question and its underlying 
assumptions using DAGs. Furthermore, we illustrated 
both the physical and analytic control approach using an 
illustrative example in the context of ESM study design 
in the domain of PA. For research questions in which the 
exposure is manipulable (e.g., PA and diet), we believe 
that the within-person encouragement design offers 
interesting avenues for further ESM research.
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